
On the Performance of Cloud Storage Applications
with Global Measurement

Guangyuan Wu1 Fangming Liu∗1 Haowen Tang1 Keke Huang1

Qixia Zhang1 Zhenhua Li2 Ben Y. Zhao3 Hai Jin1
1Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology
2School of Software, TNLIST, and KLISS MoE, Tsinghua University

3Department of Computer Science, University of California Santa Barbara

Abstract—In recent years, Dropbox, Google, and Microsoft
have been competing in the market of consumer cloud storage
(CCS) services. While once the key comparative metric, storage
capacity per user has outgrown the needs of most users. Today,
third-party applications based on CCS’s RESTful Web APIs are
becoming a primary way for users to utilize their expanded
storage resources. Unfortunately, there is very little visibility
into the performance of these Web APIs, even though they
are primary determinants of the end user experience on these
storage applications. In this paper, we report results from a
comprehensive measurement study of the Web APIs of five
popular CCS providers. Our results reveal significant differences
and limitations in API performance, which result in performance
bottlenecks visible to the user through the storage application.
We analyze the underlying system designs of the five providers’
Web APIs, and present the performance implications of their
different design choices. Our research provides practical guidance
for service providers to optimize their API performance, for
developers to improve the experience of third-party applications,
and for users to pick appropriate services that best match their
requirements.

I. INTRODUCTION

Consumer cloud storage (CCS) services like Dropbox pro-

vide convenient ways for users to access and share their files

stored in the cloud. With automatic data synchronization, these

services provide simple backup and synchronization between

devices. Recent years have seen the rapid proliferation of these

services, with competing offers from industry giants such as

Microsoft and Google joining the fray (i.e., OneDrive and

Google Drive). Growing competition in this sector has led to

lower costs and a commoditization of the service, with both

Dropbox and Google Drive offering 1 TB of storage for $9.99

per month. The competition is even more heated in China,

where providers eager for new users offer nearly unlimited

capacity (up to tens of terabytes per user) for free.

It is becoming clear, however, that larger storage capacity

is no longer a strong competitive advantage. Today’s users are

finding it challenging or difficult to fully utilize the seemingly

limitless capacity offered by Dropbox and Google Drive, let

alone the 36 TB offered by 360Cloud. A quick look at user

∗The Corresponding Author is Fangming Liu (fmliu@hust.edu.cn). The
research was supported in part by the National Natural Science Foundation
of China (NSFC) under grant 61520106005, National 973 Basic Research
Program under grant 2014CB347800, and National 863 High-Tech Research
and Development Program under grant 2015AA01A201.

forums turns up comments by users unclear on how to use the

large storage capacities 1.

Instead, a variety of popular third-party applications based

on CCS are becoming pervasive. For example, URL Droplet

helps users save interesting online content directly to Dropbox.

For people who take voice memos, DropVox uploads them to

users’ Dropbox automatically. Password keepers like 1Pass-

word store encrypted data on Dropbox, and powerful Web

apps like WeVideo, Audio Cutter, and PicMonkey store edited

videos, audios, and photos directly to Google Drive and other

CCS services. As these applications continue to grow, CCS’s

RESTful Web APIs, which provide storage access for these

third-party applications, are now becoming one of the major

ways for users to access their expanded storage.

The performance (particularly average throughput, delay,

and failure rate) of CCS Web APIs directly impact the

user experience on any third-party applications they serve.

While prior work has studied the performance of CCS native

clients [1], [2], [3], [4], [5], [6], there is very little visibility

into the performance of CCS Web APIs. In this paper, we

address this through an empirical study of Web APIs of

five popular CCS providers, including Dropbox, OneDrive,

and Google Drive in the U.S., and BaiduPCS and DBank in

China. We separate APIs into data APIs for file uploading and

downloading, and control APIs for file and folder operations.

Using a recent trace of CCS users’ file operations [6], we

develop methodology for a long-term global measurement, and

deploy a benchmark system on 13 PlanetLab vantage points

covering 9 countries across 5 continents (§ III). We analyze

different system designs of the five providers’ Web APIs, and

discuss the key factors that impact the API performance. We

list our key findings below:

• Underlying system design (§ IV). While the five CCSs

provide similar functionality through the Web APIs, the

underlying system designs (i.e., API protocol, server lo-

cation, and load-balancing strategy) are very different. We

show that only Dropbox uses a centralized system design,

and Google Drive relies on its content delivery ecosystem

to carry much of its user traffic. All these factors directly

1https://www.dropboxforum.com/hc/communities/public/questions/
201370529-WHY-1TbB-

impact API performance.

• Data API: Network bottleneck. Network plays a signif-

icant role in data API performance. Since Dropbox hosts

its data APIs only in Amazon’s North Virginia data center,

the performance for transfer of small files of MBs is very

unstable across different locations because of diverse RTTs

(§ V-B). And network congestion significantly depreciates

performance of the data APIs of BaiduPCS and DBank

(§ V-E). In contrast, OneDrive and Google Drive use differ-

ent geo-distributed system designs to mitigate the limitation

of network in different degrees (§ V-C and § V-D).

• Data API: Protocol overhead (§ V-C). Although geo-

distributed system design improves the performance of data

APIs, the design choice brings extra complexity in API

protocol. In our measurement, the complex protocol may

introduce non-negligible overhead in certain cases.

• Control API: Server processing time (§ VI-A). Server

processing time greatly impacts the delay of control APIs.

Most control API requests only need a few of RTTs for

message exchange. Thus server processing time makes up

a large part of end to end application delay. We quantify

server processing time of each control API of the CCSs

(except Google Drive), which can help third-party appli-

cation developers to design appropriate business logic for

interactive applications.

Our results reveal significant differences in performance

of different CCSs’ Web APIs across locations and time,

and analyze the substantial underlying differences among

providers. Our work provides practical guidance for users to

pick appropriate services that best match their requirements,

while suggesting possible directions for service providers to

optimize system design, and for third-party developers to

improve application performance.

II. CCS API OVERVIEW

Since third-party applications are becoming pervasive in

people’s everyday life, CCS RESTful Web API has already

become one of the major ways for users to access their

expanded storage. In this section, we first summarize the

capabilities provided by five popular CCSs’ Web APIs. Then

we compare CCS Web APIs with native clients from several

aspects to shed light on the essential differences between them.

A. Capabilities Provided by CCS Web APIs

Table I provides a summary of the RESTful Web APIs

provided by five popular CCS providers (including Dropbox,

OneDrive, Google Drive, BaiduPCS, and DBank). We can

see that all providers offer simple file upload/download (data

APIs) and basic file/folder operations (control APIs, e.g.,
create, list, move, copy, and delete).

However, several points need to be noticed. First, in terms

of file transfer capability, Dropbox and BaiduPCS support

uploading large files in multiple trunks, which provides the

same resumable upload feature as Google Drive does, and

BaiduPCS further enables applications to avoid actual data

transmission if the content already exists in the cloud. Second,

TABLE I
CAPABILITIES OF FIVE CCSS’ WEB APIS

Web APIs Service Providers

Basic Functions
Supported by all five providers(upload, download, create folder,

list, move, copy, delete)

Search Not supported by DBank

Revisions
Not supported by

OneDrive and BaiduPCS

Share Not supported by BaiduPCS

Check update
Not supported by

OneDrive and DBank

Notification
Not supported by OneDrive,

BaiduPCS, and DBank

in terms of file/folder operations, OneDrive and Google Drive

do not support copying folders. Presumably because that

OneDrive and Google Drive use a storage model based on file

IDs rather than a traditional file hierarchy used by other three

CCSs. Considering file sharing function, only BaiduPCS does

not provide the share API. Last but not least, both Dropbox

and Google Drive provide advanced capabilities like check
update and notification to enable easy implementation

of synchronization function for third-party applications.

In a word, for developers intend to build applications on

top of CCS APIs, it is necessary to take into consideration the

choice of the providers due to their diverse API capabilities.

B. Differences between Web APIs and Native Clients

Generally, the way for users to access a CCS’s official ser-

vice is its native client, which provides user-friendly graphical

user interface with commonly used capabilities like automatic

data synchronization. Previous works studied the underlying

protocol used by CCS native clients [1], [4], [2], [3], [6]. How-

ever, three major differences exist between CCS Web APIs and

native clients: 1) Different purposes. CCS providers develop

their own proprietary native clients and design advanced client

protocols to facilitate efficient file synchronization, while their

Web APIs are offered to developers to build up third-party ap-

plications with diverse functionalities to enrich their services.

2) Different capabilities. Native client protocols are specialized

for file synchronization with complex and stateful logics, while

Web APIs provide general and simple data access capabilities

in a RESTful (i.e., stateless) fashion as we discussed above.

3) Different system designs. Web APIs not only have simpler

application layer protocols, but also are served by a different

set of service domains compared to their native clients [1].

These huge differences imply that the performance of CCS

Web APIs is deemed to be very different from that of native

clients. This naturally raises several questions. How do CCS
providers design their RESTful Web APIs? How well can
different CCS APIs perform? What are the key factors that
affect the performance of CCS APIs? The remainder of this

paper answers these questions.

III. METHODOLOGY

In this section, we describe how we design and conduct

global measurement to analyze and compare the performance

of different CCSs’ Web APIs. We first demonstrate how we

implement our system to benchmark CCS Web APIs. Then we

show the measurement setup, including how we deliberately

select popular CCS providers, the most common and useful

APIs, crucial performance metrics, and globally distributed

vantage points. In addition, we illustrate how we deploy the

measurement on a global scale with RTT measurement and

how we find the locations of the CCSs’ API servers.

A. Benchmark Tool

Most CCS providers offer their APIs via HTTP-based

RESTful APIs. To make an API call, a third-party application

should generate an HTTP request message conforming to

the API’s protocol and send it to a service domain (a fixed

domain provided in the official API documents or a temporary

one returned by a previous response). Then the application

receives an HTTP response message which contains file con-

tent of a download API call or tells the result of an upload

or control API call. Although most APIs only require one

request/response exchange in an API call, multiple exchanges

may be necessary for several APIs.

Instead of using existing SDKs offered by the CCS

providers, we develop a measurement program from scratch

using C++ for a fair comparison among CCSs and full control

over the measurement. The program consists of three layers.

The bottom layer is an HTTP(s) client built with Socket APIs

and OpenSSL APIs. This layer records domain names and

IPs used in each API call for an in-depth understanding of

the underlying system designs. The middle layer contains five

modules to implement the API protocols of the five CCSs.

Specifically, the modules generate HTTP request messages,

send them via the HTTP(s) client, and receive and parse the

HTTP response messages. The top layer calls a specific API

according to the command line arguments, and records the

delay and result into log files.

B. Measurement Setup

Selection of CCS providers. We deliberately select five

representative CCS providers worldwide: Dropbox, OneDrive,

Google Drive, BaiduPCS, and DBank. The former three are

the most popular CCS providers who have the largest user

base, the latter two are popular products from IT giants in

China. Most of these CCSs provide terabytes of storage at a

fairly low price or even for free (e.g., BaiduPCS offers 2 TB

storage for free accounts), which is extremely attractive to both

users and third-party developers.

Selection of API sets. Despite diverse API capabilities

offered by different CCS providers, there exist two com-

mon core sets of APIs that lay a foundation for imple-

menting a full-fledged CCS application, i.e., basic file trans-

mission (data APIs), including upload, download, and

basic file/folder operations (control APIs), including create
folder, list, move, copy, delete and share. These

APIs are offered as the basic functionalities by most CCSs

today as evidenced in Table I. Although a few CCS providers

offer specialized APIs such as notification, we skip

Shanghai (SH)

Hong Kong (HK)
Tokyo (TYO)

Melbourne (MEL)

Wellington (NZ)

Seattle (UW)

Los Angeles (LA)

Princeton (PU)

Buenos Aires (BsAs)

St Andrews (UK) Warsaw (PL)

Cambridge (CAM)

Athens (GR)

Fig. 1. 13 vantage points covering 9 countries across 5 continents.

evaluating these special offerings and focus on the more

general and basic APIs.

Selection of metrics. Three metrics are devised to measure

the API performance: average throughput (i.e., the average

data rate for transferring a file, which is a key indicator of data

API performance), delay (i.e., the time it takes for a specific

API to complete, which is the most intuitive user experience of

all APIs), and failure rate (i.e., the ratio of failed API requests

since not every API call will be successful). These metrics

reflect the performance of CCS APIs, which is essential for

us to reveal the performance implication of the CCSs’ different

system designs.

Selection of vantage points. PlanetLab is a global research

network that has been used as the experimental platform for

tremendous networking and measurement researches. Since

PlanetLab nodes are shared virtual machines contributed by

different universities, there may exist performance issues such

as other applications or background traffic that will compete

for the bandwidth (such issues also exist in normal usage of

CCSs). To minimize such interference, we use speedtest-cli 2,

a bandwidth test tool based on python, to test the bandwidth

limitations on different PlanetLab nodes. We select 13 geo-

distributed nodes covering 9 countries across 5 continents (see

Fig. 1), which steadily provide over 40 Mbps upload and

100 Mbps download bandwidth, so as to obtain the actual

end-to-end networking performance when accessing CCS APIs

from different locations.

Measurement deployment. For a comprehensive under-

standing of CCS API performance across locations and over

time, we deploy our measurement system on the aforemen-

tioned 13 PlanetLab nodes, and periodically (every half an

hour) measure each control and data API for all the five

CCSs during 20 consecutive days in April, 2015. Specifically,

for control API, we perform file/folder creation, movement,

copy, delete, list, and share in sequence; for data API, we

take turns to upload and download files with given sizes

(0/0.5/1/2/4/8/50 MB) 3 to and from each CCS back to

back to ensure fair networking conditions. Note that we use

randomly generated files in our measurement to avoid possible

2https://github.com/sivel/speedtest-cli/
3We choose these sizes because 1) most CCS users transfer files of MBs [1],

and 2) some CCSs like Dropbox only support 150 MB data in one upload
API call.

TABLE II
UPLOAD API PROTOCOLS

CCS Service domain SSL Request/Response

Dropbox api-content.dropbox.com � File/Metadata

OneDrive apis.live.net � File/Metadata

Google Drive www.googleapis.com � File/Metadata

BaiduPCS c.pcs.baidu.com � File/Metadata

DBank

api.dbank.com � Request/Server IP

temporary IP � File/Metadata

api.dbank.com � File path/Result

interference from existing files in the systems. In addition, we

use different accounts in all vantage points in order to simulate

the real workload generated by unrelated individuals.

In order to facilitate the analysis, we interleave the API tests

with RTT measurements to the domain names in the service

URLs. Specifically, for each domain name, we repeatedly

conduct a TCP SYN probing for 10 times, i.e., sending a TCP

SYN segment to the HTTP(s) port on the resolved server IP.

The server will then return a TCP ACK segment, which tells

the RTT between the vantage point and the server 4. From the

result of RTT measurement, we can obtain information about

the network condition between each vantage point and server.

To reveal the server locations of the five CCSs’ Web APIs,

all IP addresses collected in our measurement are queried

against several online databases. Furthermore, we also use

results of the RTT measurements to verify the locations. For

example, we locate five geo-distributed data centers inside the

U.S. of OneDrive based on the RTT measurement results from

three North American vantage points although there are no

information of these IP addresses in any online databases.

After locating all IP addresses, we analyze the five CCSs’ load-

balancing strategies, respectively. Such knowledge is essential

to understand the underlying system designs of CCSs’ Web

APIs, thus enabling further analysis of API performance.

IV. CCS API SYSTEM DESIGN

The system designs (i.e., API protocol, server location, and

load-balancing strategy) are of great importance to CCS Web

APIs, with both policy 5 and performance implications. To

identify how different CCSs serve their Web APIs, we start by

analyzing the application layer protocols of their Web APIs.

Then we explore the five CCSs’ server locations as well as

their different load-balancing strategies.

A. Various CCS API Protocols

In order to protect the privacy of users’ data, all the five

CCSs utilize standard OAuth protocol for users to authorize

third-party applications.

Table II and Table III show the protocols of upload and

download APIs of the five CCSs, respectively. Note that

4We use TCP instead of UDP or ICMP since 1) CCS APIs all use TCP
service, and 2) many routers, firewalls, and even the server itself drop ICMP
packets [7].

5Web APIs of Dropbox and Google Drive are unavailable in mainland China
due to policy issues.

TABLE III
DOWNLOAD API PROTOCOLS

CCS Service Domain SSL Request/Response

Dropbox api-content.dropbox.com � File path/File

OneDrive
apis.live.net � File ID/File URL

temporary domain � GET/File

Google Drive
www.googleapis.com � File ID/File URL

temporary domain � GET/File

BaiduPCS
d.pcs.baidu.com � File path/File URL

temporary domain � GET/File

DBank
api.dbank.com � File path/File URL

temporary domain � GET/File

TABLE IV
CONTROL API PROTOCOLS

CCS Service domain SSL Capabilities

Dropbox api.dropbox.com � Create folder;

OneDrive apis.live.net � Move file/folder;

Google Drive www.googleapis.com � Copy file/folder;

BaiduPCS pcs.baidu.com � Delete file/folder;

DBank api.dbank.com � List; Share

most CCSs use SSL-secured connections for their APIs to

ensure the security of user data, whereas DBank’s APIs are

all based on plain TCP connection. In addition, all CCSs but

DBank use one HTTP request in upload APIs, i.e., issuing

an HTTP request containing the file content to the specific

service domain which returns the file metadata on success.

In contrast, DBank requires three request/response exchanges.

Similar situation also exists for the download APIs that

all CCSs but Dropbox need an additional request to get

a temporary download URL for each individual file, while

Dropbox use a fixed domain name for downloading every file.

Different from data APIs, the control APIs of each CCS are

all served in a single service domain (see Table IV), and most

APIs only require one request/response exchange.

B. Different Load-balancing Strategies

A total number of 947 unique IP addresses were collected

during our measurements. We identify the corresponding geo-

location of each IP address based on a hybrid methodology

(i.e., online databases and RTT measurement). Fig. 2 shows

the identified data and control API server locations of four

CCSs 6. We reveal the load-balancing strategies of the five

CCSs’ Web APIs below:

Dropbox: Centralized server location. Dropbox hosts its

service for data and control APIs in Amazon’s North Virginia

and Northern California data centers, respectively. The result

is consistent with that for its native client [1]. Specifically, the

data API servers are addressed by 575 IP addresses in our

measurement while that of control API servers is 13.

6Since Google Drive adopts a very different system design (see https:
//peering.google.com/about/delivery\ ecosystem.html) from others, we can
only locate the edge Points of Presence of Google’s private backbone network
instead of the data centers.

Fig. 2. CCS Web API server locations.

TABLE V
ONEDRIVE’S DATA CENTERS

API Data centers

Upload, Boydton, VA; Chicago, IL; Des Moines, IA;

Control San Jose, CA; San Antonio, TX

Download

Boydton, VA; Hong Kong; Ireland;

Greece; Sao Paolo, Brazil; Saitama, Japan;

New South Wales, Australia

OneDrive: Globally distributed data centers. Different

from Dropbox, OneDrive uses different sets of IPs for different

APIs. Specifically, OneDrive’s upload and control APIs rely on

five distributed data centers in the U.S. (see Table V), and each

API call is randomly served by one of the five data centers

regardless of user location. In contrast, OneDrive tries to serve

download API calls as close to users as possible based on its

globally distributed data centers (see Table V). Remarkably,

we observe that not all download API calls are served at the

nearest data centers from the vantage points. For example, the

Athens node may download files from data centers in Greece

or the U.S.. The possible reason may be the delay of data

transmission among data centers or load-balancing purposes.

Google Drive: Content delivery ecosystem. Instead of

using the public Internet service, Google Drive carries traf-

fic as far as possible on Google’s private global backbone

network 7. Specifically, users’ traffic will be routed to the

closest edge Point of Presence (PoP), from where the traffic

goes to Google’s data centers via its own network. Since the

TCP session is terminated at Google’s edge PoPs, the RTT

measurement can only reflect the network condition between

the vantage points and the edge PoPs, in which case the RTT

is generally lower than 10 ms.

BaiduPCS: Three-stage acceleration. BaiduPCS leverages

geo-distributed servers for its Web APIs. While the control

APIs are served only at Beijing, China, its upload API relies on

two locations (i.e., Beijing and Qingdao, China). In addition,

observation on the domain names in the temporary URLs used

for downloading file content (see Section IV-A) shows a three-

stage acceleration mechanism of the download API:

• At first, files can only be downloaded from the servers they

were uploaded to.

• Files will be moved to cache servers after they have been

downloaded by 50 times. The cache servers are located at

7https://peering.google.com/about/delivery\ ecosystem.html

Zhejiang, China.

• After certain times of download (50 for files smaller than

2 MB and 20 for others) since cached, the file will be

eventually moved to BaiduPCS’s CDN servers, which are

located at multiple locations, e.g., Zhejiang and Guangdong

in China. It is worth noting that we observe some IP

addresses located at Los Angeles, U.S., which is the only

location outside mainland China.

DBank: Meshed system design. DBank’s control API

relies on its servers at Beijing, China. Considering data APIs,

DBank’s servers at Hong Kong serve all users outside main-

land China, which is a centralized system design like Dropbox.

While for users inside mainland China, files will be copied to

geo-distributed servers for lower network latency.

V. EVALUATING DATA API

Data storage is the most basic and important functionality

provided by CCS Web APIs. It can be drastically affected by

the underlying system design. In this section, we first evaluate

the overall experience of five CCSs’ data APIs. Then we

discuss several underlying influencing factors, illustrating the

performance implications of various system design choices.

Our results provide practical guidance for providers to improve

the performance of the APIs, for developers to efficiently use

these APIs, and for users to choose appropriate services.

A. Overall Experience
Fig. 3 shows the average throughput of uploading and

downloading an 50 MB file to and from the five CCSs on

the 13 vantage points (see Fig. 1 for the node names), and

Fig. 4 shows the average delay of uploading and downloading

an 8 MB file 8. From the figures we can see that:

• Considering Dropbox’s data API, the performance for

transfer of smaller files of MBs is much more unstable

across geo-distributed locations compared with that of big-

ger files (e.g., 50 MB or more). Specifically, the average

delay of downloading an 8 MB file from Dropbox on NZ

node (Wellington) is about 23 times of that on PU node

(Princeton) as evidenced in Fig. 4(b). In the meantime,

from Fig. 3(b) we can see that the average throughput of

downloading an 50 MB file from Dropbox on PU node is

only 12 times of that on NZ node.

• The average upload throughputs of Dropbox and OneDrive

are similar at most locations (see Fig. 3(a)). While on quite

a few nodes the average download throughputs of OneDrive

far exceed that of Dropbox (see Fig. 3(b)), including HK

node (Hong Kong), NZ node (Wellington), UK node (St

Andrews), CAM node (Cambridge), and PL node (Warsaw).

• While Google Drive outperforms others at most van-

tage points, CCSs in mainland China (i.e., BaiduPCS and

DBank) underperform across different locations.

The following subsections reveal the underlying causes of

these observations in terms of different system design choices.

8Note that the data APIs offered by Dropbox and Google Drive are
unavailable on Shanghai node during our measurement.

HK SH TYO MEL NZ UW LA PU BsAs UK CAM PL GR
10

−1

10
0

10
1

10
2

T
hr

ou
gh

pu
t (

M
bp

s)

Dropbox OneDrive Google Drive BaiduPCS DBank

(a) Upload

HK SH TYO MEL NZ UW LA PU BsAs UK CAM PL GR
10

−1

10
0

10
1

10
2

T
hr

ou
gh

pu
t (

M
bp

s)

Dropbox OneDrive Google Drive BaiduPCS DBank

(b) Download
Fig. 3. Average throughput of uploading/downloading a 50 MB file to/from the five CCSs on the 13 PlanetLab nodes.

HK SH TYO MEL NZ UW LA PU BsAs UK CAM PL GR
10

0

10
1

10
2

10
3

D
el

ay
 (

se
c)

Dropbox OneDrive Google Drive BaiduPCS DBank

(a) Upload

HK SH TYO MEL NZ UW LA PU BsAs UK CAM PL GR
10

0

10
1

10
2

10
3

D
el

ay
 (

se
c)

Dropbox OneDrive Google Drive BaiduPCS DBank

(b) Download
Fig. 4. Average delay of uploading/downloading an 8 MB file to/from the five CCSs on the 13 PlanetLab nodes.

B. RTT issue of Dropbox

As mentioned above, the performance of Dropbox’s data

API becomes vulnerable with small files (e.g., several

megabytes). Since most CCS users transfer files of MBs [1],

this bottleneck can significantly compromise user experience.

In order to reveal the underlying reason behind the per-

formance fluctuation of Dropbox’s data API, we take the

measurement data of Dropbox’s download API on Seattle node

and Melbourne node as an example to give an analysis.

Specifically, the delay of Dropbox’s download API consists

of the time for:

• Session maintenance, including DNS query (nearly con-

stant time), TCP handshake (one RTT), and SSL handshake

(two RTTs) before the file transmission, and receiving re-

sponse message after the file transmission. For comparison,

we measure the delay of downloading a 0 MB file as the

time for session maintenance.

• File transmission, i.e., the time of transferring the HTTP

request message containing the file content.

Fit. 5 shows the CDF of delay of downloading different

sized files from Dropbox on Seattle node and Melbourne node.

Considering the minimum delay of each file size 9, we can see

that when downloading an 8 MB file, the time for transferring

the last 4 MB data (i.e., Δts in Fig. 5(a) and Δtm in Fig. 5(b))

is almost the same, while the time of session maintenance (the

delay of 0 MB file) and transferring the first 4 MB data lead

to the huge performance gap between the two nodes.

9We focus on the best achievable performance in this subsection to eliminate
the interference of network congestion.

0 2 4 6 8 10 120

0.5

1

Delay (sec)

C
D

F

0 MB
0.5 MB
1 MB
2 MB
4 MB
8 MB

Δ ts

(a) Seattle node

0 2 4 6 8 100

0.5

1

Delay (sec)

C
D

F

0 MB
0.5 MB
1 MB
2 MB
4 MB
8 MB

Δ tm

(b) Melbourne node

Fig. 5. CDF of delay of downloading different sized files from Dropbox on
Seattle node and Melbourne node.

The reason comes from the RTT issue of Dropbox’s

centralized system design. Specifically, in our measurement,

the minimum RTTs are about 67 ms on Seattle node and

224 ms on Melbourne node, respectively. Since these HTTP

implementations all take TCP as the transport-layer connection

protocol, the large RTT can not only extend the time of TCP

and SSL handshake, but also prolong the TCP slow start phase.

For illustration, we compute the amounts of data the TCP

flows need to transfer to achieve the maximum throughput

on the two vantage points as in [8]. The results are 1.9 MB

on Seattle node and 6.3 MB on Melbourne node, respectively,

which are similar to our measurement data as showed in Fig. 5.

0 0.5 1 2 4 80

2

4

6

8

File Size (MB)

D
el

ay
 (s

ec
)

Shanghai node − OneDrive
Hong Kong node − Dropbox

Fig. 6. Minimum delay of downloading different sized files from OneDrive
on Shanghai node, and that from Dropbox on Hong Kong node.

This indicates that the slow start phase prolonged by the large

RTT is the main reason of the performance depreciation of

Dropbox’s data API on Melbourne node.

The same problem also exists on other vantage points

in our measurement, especially for those outside the U.S..

In fact, according to the RTT measurement, the RTTs to

Dropbox’s file servers varies from 23 ms (on Princeton node)

to 224 ms (on Melbourne node). The diverse RTTs lead to

the performance fluctuation of Dropbox’s data API, especially

when transferring files of MBs. This suggests that third-

party application developers should keep the underlying TCP

connection alive longer in order to reduce slow start times so

as to maintain a high throughput.

C. Geo-distributed Data Centers of OneDrive

We observe from Fig. 3 that although the average upload

throughput of OneDrive is similar to that of Dropbox on a

global scale, OneDrive’s download API outperforms that of

Dropbox on plenty of vantage points, including HK node

(Hong Kong), NZ node (Wellington), UK node (St Andrews),

CAM node (Cambridge), and PL node (Warsaw).

The reason is that OneDrive’s Web APIs rely on its globally

distributed data centers to reduce RTT between users and

servers, especially for its download API (see Section IV-B).

Specifically, while OneDrive’s upload API relies on five data

centers in the U.S., users of OneDrive outside the U.S. may

download files from a closer data center compared with users

of Dropbox.

The geo-distributed system design, however, brings draw-

backs with benefits. Since the file requested by a user may

be stored in several data centers, an additional request is

necessary in order to get the current download URL of the

file (see Section IV-A). The complex protocol may introduce

non-negligible performance overhead in certain cases.

As an example, Fig. 6 shows the minimum delay of down-

loading different sized files from OneDrive on Shanghai node,

and that from Dropbox on Hong Kong node. We can observe

that Dropbox outperforms OneDrive in terms of each file size

because of the huge gap between the delays of downloading a

0 MB file (i.e., the time of session maintenance as explained

in Section V-B) on the two nodes. Since the RTTs in the two

0.5 1 2 4 80.5

1

1.5

2

2.5

File Size (MB)

D
el

ay
 (s

ec
)

Cambridge
Hong Kong
Melbourne

St Andrews
Los Angeles

Fig. 7. Minimum delay of downloading different sized files from Google
Drive on five geo-distributed PlanetLab nodes.

datasets are almost the same (i.e., 222 ms 10 and 220 ms,

respectively), we can infer that the protocol overhead is the

main reason that depreciate the performance of OneDrive.

As mentioned in Section IV-A, the protocol overhead

problem exists for all the CCSs except Dropbox, since only

Dropbox adopts a centralized system design. This suggests

that CCS providers should try to adopt a simpler protocol in

order to improve the quality of their API services.

D. Content Delivery Ecosystem of Google Drive

Although we can not measure the RTTs between the vantage

points and Google Drive’s file servers directly as mentioned

in Section IV-B, we observe significantly low RTTs from the

measurement data of Google Drive’s data API. For illustration,

we plot the minimum delay of downloading different sized

files from Google Drive on five vantage points in Fig. 7.

We can observe that the time of file transmission (as defined

in Section V-B) grows exponentially with file size doubles

on each node, which implies that the TCP flows have reach

the maximum throughput after sending little amounts of data.

In fact, the data needed to be sent to achieve the maximum

throughput is generally lesser than 1 MB on the 13 vantage

points in our measurement. We can infer that the RTTs

between these vantage points and Google Drive’s file servers

are extremely low.

The reason is that Google Drive’s Web APIs relies on its

content delivery ecosystem instead of public Internet service

(see Section IV-B), which is a very different design choice

compared with the other CCSs. As a consequence, the low

RTTs between users and Google Drive’s file servers lead to

the excellent performance of Google Drive across locations.

E. Network Congestion of BaiduPCS and DBank

In our measurement, BaiduPCS and DBank underperform

others at most locations. The reason comes from the severe

network congestion. As an example, Fig. 8(a) shows the delay

of uploading files to BaiduPCS on Melbourne node from April

18, 2015 to April 29, 2015, and Fig. 8(b) plots the correspond-

ing RTT during the same period. Since network congestion can

be reflected by the prolonged RTT, we can observe that the

data API performance is significantly depreciated by network

10In our measurement, we observe that Shanghai node always download
files from OneDrive’s data centers inside the U.S..

04/19 04/21 04/23 04/25 04/27 04/290

500

1000

1500

2000

Date

D
el

ay
 (s

ec
)

0 MB 0.5 MB 1 MB 2 MB 4 MB 8 MB

(a) Delay

04/19 04/21 04/23 04/25 04/27 04/29300

400

500

600

700

800

Date

A
vg

. R
TT

 (m
s) Melbourne node to BaiduPCS (upload)

(b) Average RTT

Fig. 8. Delay of uploading different sized files to BaiduPCS on Melbourne
node and the corresponding average RTT.

Fig. 9. failure rates of the five CCSs’ data APIs.

congestion. In our measurement, the RTT to BaiduPCS and

DBank is much more volatile than to others across the 13

nodes, which implies that network congestion is the main

bottleneck of the data API of BaiduPCS and DBank.

However, we can observe from Fig. 3 and Fig. 4 that on

certain vantage points such as SH node (Shanghai), BaiduPCS

and DBank provide better performance than others. The ob-

servation suggests that users should choose appropriate CCS

providers according to their geographical locations.

F. Data API Failure Rate

Failure rate of data API is crucially important for the

perceived experience of upper-layer applications. Fig. 9 shows

the failure rates of the five CCSs’ data APIs during our

measurement. Specifically, we classify all failure into two

groups, i.e., server failure (including HTTP 5XX errors) and

network failure (including connect errors, read errors, and

write errors). We can see that the failure rates of BaiduPCS

and DBank are much higher than others with vast amounts

of network failure, which is the consequence of the network

0 0.5 1 2 4 80

100

200

300

400

500

File Size (MB)

Fa
ilu

re

Server (down)
Connect (down)
Transmission (down)
Server (up)
Connect (up)
Transmission (up)

Fig. 10. # of failed API calls of different sized files of DBank.

0 50 100 150 200 2500

500

1000

Min. RTT (ms)

D
el

ay
 (m

s)

Dropbox
OneDrive
BaiduPCS
DBank

Fig. 11. Delay versus RTT of the delete folder APIs of four CCSs.

congestion problem. In contrast, the failure rate of Google

Drive is significantly lower than others because of its private

backbone network.

Furthermore, we take DBank, which has the highest failure

rate of the five CCSs, as an example, to reveal the correlation

between failure rate and file size (see Fig. 10). Note that we

further classify network failure into two groups, i.e., connec-

tion failures (i.e., connect errors) and transmission failures

(i.e., read errors and write errors). As a result, we can see

that the transmission failure rate increases significantly with

file size. In conclusion, third-party applications should transfer

large files in multiple trunks via advanced data APIs (see

Section IV-A) to minimize losses of failed data API calls.

VI. EVALUATING CONTROL API

Control APIs are essential for building full-fledged CCS

applications. In this section, we study the performance of the

five CCSs’ control APIs, and reveal the major impact factors.

A. Server Processing Time

In practice, multiple control APIs are always called in se-

quence via a single connection. Accordingly, we only measure

the time of transferring HTTP messages without the time for

connection establishment in the control API measurement.

From the measurement data we observe a linear relation

between the delay of control APIs and RTT. As an example,

Fig. 11 shows the delay versus RTT of the delete folder
APIs of four CCSs 11. The reason is that the messages of

control APIs are generally very short. As a consequence, the

delay of a control API call consists of a small and constant

11We do not include Google Drive here since we can only measure the
RTT to its edge PoPs instead of where the requests are actually served.

TABLE VI
SERVER PROCESSING TIME (MILLISECOND) OF CONTROL APIS

API Dropbox OneDrive BaiduPCS DBank

Create folder 204.40 457.06 (2) 59.02 31.37

Move file 250.35 678.28 (3) 51.85 39.67

Move folder 257.46 641.01 (3) 53.63 47.90

Copy file 309.61 802.16 (3) 72.42 41.44

Copy folder 265.02 — 50.35 48.64

Delete file 219.24 340.91 (2) 49.69 28.32

Delete folder 246.18 319.51 (2) 36.71 27.56

List 79.55 138.46 (1) 65.68 20.12

Share 87.11 540.07 (2) — —

0

0.001

0.002

0.003

0.004

Fa
ilu

re
 R

at
e

DropboxOneDrive
Google Drive

BaiduPCS
DBank

Fig. 12. Failure rates of the five CCSs’ control APIs.

number of RTTs (see the slope of lines in Fig. 11) and a

constant time for server processing (see the offset on y-axis).

By calculating the linear regression of delay on RTT, we

summarize the server processing time of each control API in

Table VI. Note that OneDrive occasionally need additional

requests to query file/folder IDs, and we record the number

of HTTP requests needed by each OneDrive’s Control API in

parentheses. We can see that the control APIs of BaiduPCS

and DBank outperform that of Dropbox and OneDrive, and

OneDrive has a server processing time of up to 802 ms.

Our results in Table VI provide a reference for predicting

the performance of control APIs from the RTT. In addition,

third-party applications are strongly recommended to maintain

a local cache of file/folder metadata to reduce the overhead

caused by the complex API protocol of OneDrive.

B. Control API Failure Rate

Different from data APIs, the failure rate of control APIs

is much lower. Fig. 12 shows the overall failure rate of each

CCS’s control API. We can see that even for DBank, which

performs the worst in our global measurement, the control API

failure rate is less than 0.4%, and those of Google Drive and

OneDrive are less than 0.06%.

VII. RELATED WORK

Cloud-based services are now getting pervasive on a large

scale. Many prior works have focused on distinct aspects

of cloud services, such as cloud service pricing policy [9],

datacenter carbon emission [10], datacenter network manage-

ment [11], [12], and datacenter virtual machine [13].

Cloud storage, as one of the most important components

of cloud services, has gained increasing momentum within

research community. A number of previous works study cloud

storage from different perspectives, including the design and

implementation of the service infrastructure [14], [15], [16],

[17], privacy and security issues [18], [19], [20], [21], [22],

and characteristics and access patterns of the data residing in

cloud storage systems [23]. In addition, some studies focus on

current public offerings [24]. Specifically, the performance of

Microsoft Azure is explored in [25], Amazon S3 is measured

in [26] to determine if cloud storage is suitable for scientific

grids, and a client-side performance analysis of Amazon S3 is

made in [27].

Unlike cloud storage like Amazon S3 and Windows Azure

Storage, CCS provide services for saving personal files, syn-

chronizing devices and sharing content with others. As the

earliest and most popular CCS, Dropbox has been studied

extensively from different angles. Through measurements on

a university campus and in residential networks, Drago et
al. characterize Dropbox and its user workload, and analyzes

system architecture and storage protocol to reveal possible

performance bottlenecks [1]. Similarly, Wang et al. [2] and

Li et al. [3] note the existence of performance bottlenecks

in Dropbox-like cloud storage services, and propose new

mechanisms to overcome them. In addition, others character-

ized Dropbox client workloads [28], Quality of Experience

(QoE) of Dropbox-like services [29], and the possibility of

unauthorized data access and the security implications of

storing data in Dropbox [30]. Some works also study other

popular CCS solutions like Wuala [31]. In addition, Tang et al.
synergize multiple CCSs to improve performance, reliability,

and security [32].

Instead of focusing on a specific service, plenty of studies

compare alternative CCS providers. Specifically, Drago et al.
compare system architecture and synchronization performance

of five CCS services [4]. Hu et al. study the backup and restore

performance as well as privacy related issues of four CCS

services by comparing their traffic usage, delay time, and CPU

usage of uploading new files [5]. Li et al. extend their previous

work [3] to unravel the general factors that may significantly

affect the data sync traffic [6]. Different from these studies, our

work presents a long-term global measurement of five popular

CCSs to reveal the diverse and varying characteristics in terms

of system designs as well as the performance implications of

different design choices.

Above works all focus on native clients of CCS providers.

However, their RESTful Web APIs are very different from

native clients in purpose, capability, and system design. Only

a few have studied the Web APIs. An active measurement

study of three CCSs’ Web APIs is presented in [33], providing

statistical distributions that model various key performance

aspects to characterize their QoS of Web APIs, such as transfer

speed and failure rate, but does not investigate the underlying

system designs of these services.

Our work is different from previous studies by revealing the

underlying system designs of five popular CCSs’ Web APIs,

and analyzing the performance implication of different system

design choices. Through a long-term global measurement

study, we provide practical guidance for service providers to

optimize their API performance, for developers to improve the

experience of third-party applications, and for users to pick

appropriate services that best match their requirements.

VIII. CONCLUSION

In this work, we perform a comprehensive empirical study

of the RESTful Web APIs of five popular CCSs. We develop

a set of measurement tools, and deploy a trial on 13 geo-

distributed PlanetLab nodes covering 13 countries across 5

continents for 20 consecutive days in April, 2015. Our results

uncover the system designs of the five CCSs’ Web APIs, and

reveal their diverse and varying performance in both spatial

and temporal dimensions.

Our analysis leads to six findings: 1) The five CCSs have

very different system designs. We observe that only Drop-

box adopts a centralized system design, and Google Drive

relies its service on the content delivery ecosystem. 2) Since

Dropbox hosts its data APIs only in Amazon’s North Virginia

data center, the performance is depreciated by RTT issue

on many locations. Third-party developers should keep the

underlying TCP connection alive longer in order to maintain

a high throughput. 3) Although geo-distributed system design

improves the performance of data APIs, the complex protocol

may introduce non-negligible performance overhead in certain

cases. Service providers should try to adopt a simpler protocol

in order to improve the quality of service. 4) The performance

of BaiduPCS and DBank is limited outside the mainland

China as a consequence of severe network congestion. While

Dropbox and Google Drive are unavailable inside mainland

China. Thus users should choose appropriate CCS providers

according to their geographical locations. 5) The failure rate

of data API increases significantly with file size. Third-party

developers should transfer large files in multiple trunks to

minimize losses of failed data API calls. 6) Server processing

time has significant impact on the delay of control APIs.

Developers should take this into consideration and design

appropriate business logic for interactive applications.

REFERENCES

[1] I. Drago, M. Mellia, M. Munafo, A. Sperotto, R. Sadre, and A. Pras,
“Inside Dropbox: Understanding Personal Cloud Storage Services,” in
Proc. of IMC. ACM, 2012.

[2] H. Wang, R. Shea, F. Wang, and J. Liu, “On the Impact of Virtualization
on Dropbox-like Cloud File Storage/Synchronization Services,” in Proc.
of IWQos. IEEE, 2012.

[3] Z. Li, C. Wilson, Z. Jiang, Y. Liu et al., “Efficient Batched Synchroniza-
tion in Dropbox-Like Cloud Storage Services,” in Proc. of Middleware.
ACM, 2013.

[4] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras, “Benchmarking
Personal Cloud Storage,” in Proc. of IMC. ACM, 2013.

[5] W. Hu, T. Yang, and J. N. Matthews, “The Good, the Bad and the Ugly
of Consumer Cloud Storage,” SIGOPS Oper. Syst. Rev., vol. 44, no. 3,
2010.

[6] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu et al., “Towards Network-level
Efficiency for Cloud Storage Services,” in Proc. of IMC. ACM, 2014.

[7] K. Gummadi, H. Madhyastha, S. Gribble, H. Levy, and D. Wetherall,
“Improving the Reliability of Internet Paths with One-hop Source
Routing,” in Proc. of OSDI. USENIX, 2004.

[8] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP Latency,” in
Proc. of INFOCOM. IEEE, 2000.

[9] X. Yi, F. Liu, Z. Li, and H. Jin, “Flexible Instance: Meeting Deadlines
of Delay Tolerant Jobs in The Cloud with Dynamic Pricing,” in Proc.
of ICDCS. IEEE, 2016.

[10] Z. Zhou, F. Liu, R. Zou, J. Liu, H. Xu, and H. Jin, “Carbon-aware
Online Control of Geo-distributed Cloud Services,” IEEE Transactions
on Parallel and Distributed Systems, vol. PP, no. 99, 2015.

[11] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic SDN Controller
Assignment in Data Center Networks: Stable Matching with Transfers,”
in Proc. of INFOCOM. IEEE, 2016.

[12] J. Guo, F. Liu, J. C. S. Lui, and H. Jin, “Fair Network Bandwidth
Allocation in IaaS Datacenters via a Cooperative Game Approach,”
IEEE/ACM Transactions on Networking, vol. 24, no. 2, 2016.

[13] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, “Managing Performance
Overhead of Virtual Machines in Cloud Computing: A Survey, State
of the Art, and Future Directions,” Proceedings of the IEEE, vol. 102,
no. 1, 2014.

[14] B. Calder, J. Wang et al., “Windows Azure Storage: A Highly Available
Cloud Storage Service with Strong Consistency,” in Proc. of SOSP.
ACM, 2011.

[15] M. Vrable, S. Savage, and G. Voelker, “Cumulus: Filesystem Backup to
the Cloud,” in Proc. of FAST. USENIX, 2009.

[16] ——, “BlueSky: A Cloud-backed File System for the Enterprise,” in
Proc. of FAST. USENIX, 2012.

[17] Y. Huang, Z. Li, G. Liu, and Y. Dai, “Cloud Download: Using Cloud
Utilities to Achieve High-quality Content Distribution for Unpopular
Videos,” in Proc. of MM. ACM, 2011.

[18] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “DepSky:
Dependable and Secure Storage in a Cloud-of-Clouds,” Trans. Storage,
vol. 9, no. 4, 2013.

[19] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish, “Depot: Cloud Storage with Minimal Trust,” in Proc. of
OSDI. USENIX, 2010.

[20] D. Kholia and P. Wegrzyn, “Looking Inside the (Drop) Box,” in Proc.
of WOOT. USENIX, 2013.

[21] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
Ownership in Remote Storage Systems,” in Proc. of CCS. ACM, 2011.

[22] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side Channels in Cloud
Services: Deduplication in Cloud Storage,” IEEE Security and Privacy,
vol. 8, no. 6, 2010.

[23] S. Liu, X. Huang, H. Fu, and G. Yang, “Understanding Data Charac-
teristics and Access Patterns in a Cloud Storage System,” in Proc. of
CCGrid. IEEE, 2013.

[24] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Chamness,
and W. Hsu, “Characteristics of Backup Workloads in Production
Systems,” in Proc. of FAST. USENIX, 2012.

[25] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey, “Early
Observations on the Performance of Windows Azure,” in Proc. of
HPDC. ACM, 2010.

[26] M. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon S3
for Science Grids: A Viable Solution?” in Proc. of DADC. ACM, 2008.

[27] A. Bergen, Y. Coady, and R. McGeer, “Client Bandwidth: The Forgotten
Metric of Online Storage Providers,” in Proc. of PacRim. IEEE, 2011.

[28] G. Goncalves, I. Drago, A. Couto da Silva, A. Borges Vieira et al.,
“Modeling the Dropbox Client Behavior,” in Proc. of ICC. IEEE,
2014.

[29] P. Casas, H. Fischer, S. Suette, and R. Schatz, “A First Look at Quality
of Experience in Personal Cloud Storage Services,” in Proc. of ICC.
IEEE, 2013.

[30] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl,
“Dark Clouds on the Horizon: Using Cloud Storage As Attack Vector
and Online Slack Space,” in Proc. of SEC. USENIX, 2011.

[31] T. Mager, E. Biersack, and P. Michiardi, “A Measurement Study of the
Wuala On-line Storage Service,” in Proc. of P2P. IEEE, 2012.

[32] H. Tang, F. Liu, J. Shen, Y. Jin, and C. Guo, “UniDrive: Synergize
Multiple Consumer Cloud Storage Services,” in Proc. of Middleware.
ACM, 2015.

[33] R. Gracia-Tinedo, M. Artigas, A. Moreno-Martinez, C. Cotes, and
P. Lopez, “Actively Measuring Personal Cloud Storage,” in Proc. of
CLOUD. IEEE, 2013.

